
A PATTERN SYSTEM FOR SOUND PROCESSES

Hanns Holger Rutz
University of Music and Performing Arts Graz

Institute of Electronic Music and Acoustics (IEM)
rutz@iem.at

ABSTRACT

This article reports on a new library for the ScalaCollider
and Sound Processes computer music environments, a trans-
lation and adaptation of the patterns subsystem known from
SuperCollider. From the perspective of electro-acoustic
music, patterns can easily be overlooked by reducing their
meaning to the production of “notes” in the manner of
“algorithmic composition”. However, we show that they
can be understood as a particular kind of programming
language, considering them as a domain specific language
for structures inspired by collection processing. Using ex-
amples from SuperCollider created by Ron Kuivila during
an artistic research residency embedded in our project Al-
gorithms that Matter, we show the challenges in translating
this system from one programming language with a particu-
lar set of paradigms to another. If this process is studied as
a reconfiguration of an algorithmic ensemble, the translated
system produces new usage scenarios hitherto not possible.

1. INTRODUCTION

In 2017, we started the three year artistic research project
Algorithms that Matter (ALMAT) 1 which aims at under-
standing the agency in algorithmic experimentation, the
reciprocal exchange between computer musicians and their
(mostly software) machines. In this project, we make use
of software systems developed by the investigators, which
serve as vehicles for experimentation, artistic practice and
research. One way to observe agential properties is to see
what happens when these highly personalised systems are
exposed to other artists, who may come with very different
preconceptions as well as with their own tools. To facilitate
this source of friction, we invite guest artists to an in situ
residency, preceded by a preparatory online dialogue. This
article describes how the first of these exchanges led to a
process of reimplementing the patterns subsystem of Super-
Collider within our own framework Sound Processes, and
how this process generated new conceptual opportunities.

1 https://almat.iem.at/

Copyright: © 2018 Hanns Holger Rutz et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

2. PATTERNS IN THE COURSE OF
RAPPROCHEMENT

In August 2017, I began a written exchange with Ron
Kuivila, ALMAT’s first guest artist, to see where we could
connect in terms of our work process. Since Kuivila is a
developer and user of SuperCollider, and my framework
Sound Processes [1] incorporates a dialect of SuperCollider
for real-time sound synthesis, based on the Scala program-
ming language, it seemed natural to ask him to look into
Sound Processes and see if he could imagine implement-
ing sound sketches with it. Kuivila was working heavily
with a subsystem within SuperCollider called patterns, and
in fact he had contributed to the current implementation
of this system and written an authoritative tutorial on it
[2]. The pattern system is a fairly self-contained part of
the SuperCollider language part, and initially functions
independently from the sound synthesis part. This may
be one reason why I personally had been exposed only
superficially to it, the other being that the use cases high-
lighted by the documentation and online help are mostly
those that fall into a narrow category of “algorithmic com-
position”, where symbols—prominently pitch and time—
are produced and processed, an approach relatively remote
from my own “electro-acoustic” practice. It is thus no
surprise that Sound Processes did not feature anything equi-
valent to patterns.

We stood in front of the curious situation that we both
seemingly worked within the same environment of Super-
Collider, but that Kuivila needed to find an entry path to
Sound Processes, and I needed to find an entry path to pat-
terns. This two way clarification dialogue dominated the
first two months of our exchange, and from this emerged
the project of trying to understand the “mattering” of a par-
ticular set of algorithms, the pattern system, through the
attempt of translating it into my own system. 2 Although I
described patterns as relatively self-contained, this pertains
to the conceptual level, whereas architecturally patterns are
deeply intertwined with SuperCollider, as they rely on the
composition of abstract functions and on coroutines [3] for
their implementation.

2.1 Anatomy of Patterns

Briefly, patterns are small composable building blocks—
in their atomicity and combinatorics not unlike SuperCol-
lider’s UGens for DSP blocks—describing the generation,

2 The entire research process, in which the patterns system only played
a partial role, is documented on the Research Catalogue: https://www.
researchcatalogue.net/view/386118/386119 (accessed 02-Apr-2018).

mailto:rutz@iem.at
https://almat.iem.at/
http://creativecommons.org/licenses/by/3.0/
https://www.researchcatalogue.net/view/386118/386119
https://www.researchcatalogue.net/view/386118/386119

filtering and transformation of a stream of symbols (often
numbers). Patterns are static descriptions of a structure, and
in order to produce actual symbols they are expanded to
stateful streams, which respond to the method next by emit-
ting the respective next symbol. For example, in Pseq([1,

2, 3], 2).asStream.nextN(8), the Pseq describes a pat-
tern that iterates twice over the sequence 1, 2, 3; asStream
creates a fresh stream from the pattern (initialising the state,
such as the iteration counter), and nextN(8) calls next

eight times, returning an array of the values thus produced:
[1, 2, 3, 1, 2, 3, nil, nil]. Any attempt to yield
more values than represented by the stream results in the
return value of nil, indicating that the stream is exhausted.
This mechanism is used in the streams implementation to
determine the end of stream, for example when concatenat-
ing two streams.

The majority of patterns qualify as value patterns, simply
describing the transformation of values abstracted from par-
ticular context, for instance arithmetic operations, group-
ing, duplicating, filtering elements; a small subset is formed
by event patterns that assume the element type Event (a
key-value dictionary) which provides temporal information,
and is thus used to combine streams sequentially or parallel
in time, and also providing a representation of sounding
objects.

3. MATCHES AND MISMATCHES FOR SCALA

Since streams in SuperCollider are implemented based on
coroutines, where each coroutine invocation yields the next
value of the stream, a straight forward translation into the
Scala programming language would be based on coroutines
as well. Coroutines fundamentally interact with the control
flow of a program, and therefore good coroutine support
usually has to be built into a language (this is the case
for SuperCollider). Scala however does not have native
coroutines. A former research project yielded a compiler
extension for delimited continuations [4], which could be
used to implement coroutines, but this experimental exten-
sion was never absorbed into the language and was aban-
doned. Scala’s relatively new macro meta-programming
system facilitated user contributed language transforma-
tions which were utilised in a dedicated coroutines lib-
rary. 3 Nevertheless, macros are still an experimental fea-
ture in Scala, and lacking editor and IDE support make
them not a first choice for an architectural foundation. More
importantly, while coroutine based formulations of the pat-
terns algorithms are concise and easy to devise—since we
can apply the procedural thinking of a sequential flow of
commands that transform state—the imperative model of
state mutation implied by coroutines is not susceptible to
adaptation to other needs, such as the software transactional
memory (STM) used by Sound Processes, which would
conflict with non-transactional modifications.

Patterns are relatively pure in SuperCollider, therefore a
good match for Scala whose idiomatic style favours purely
functional reasoning. On the other hand, Kuivila’s use of
patterns heavily relies on hybrid patterns that extend the set

3 http://storm-enroute.com/coroutines/ (accessed 02-Apr-2018)

Pspawner { | sp |
var i;
~np.set(\stretch, 1);
~seqs = ~seq.collect { | v, i | ~seq[i..] };
~seqs = ~seqs.mirror;
~seqs.pop;
loop {
i = 0;
while({ i < (~seqs.size - 2) }, {
var syn1, syn2;
i = ~sectionIndex;
syn1 = (instrument: 'gated sine1', gate: 1,
f: ~seqs[i][0], pan: -1, at: 15, decay: 1,
amp: 80/~seqs[i][0] min: 1).synth;

topEnvironment[\np][0] = syn1;
topEnvironment[\np][1] =
(instrument: 'gated sine2', amp: 0, at: 3);

sp.wait(0.5);
sp.seq(
Pbind(*[
// ...

])
);
TempoClock.default.tempo = 1;
syn2 = (instrument: 'gated sine', gate: 1,
f: ~seqs[i][0], pan: 1, at: 4 , decay: 4 ,
amp: 80/~seqs[i][0] min: 1, sustain: 5);

// ...
sp.wait(3);
if (~sectionIndex == i) { ~sectionIndex = i+1 };

});
topEnvironment[\np][0] = { Silent.ar };
~sectionIndex = 0;
sp.wait(1.5);

};
};

Figure 1. Principle pattern of the simplified and shortened
version of Ron Kuivila’s Electric Wind, written in Super-
Collider.

of predefined patterns with custom patterns based on stream
descriptions and thus coroutines, for example Pfunc, which
wraps a routine function for the stream’s next operation in-
side a pattern, or Pspawner, a mechanism to write temporal
(event) patterns using a routine that allows easy assembly of
parallel and sequential sections of a piece of music. Fig. 1
shows the skeleton of an early example Kuivila sent me to
explicate his use of patterns for creating Electric Wind, a
piece for flute and electronics. What can be seen here, is
that patterns have been opened up to become fully fledged
programs, issuing commands to the node proxy system
(~np.set), performing operations on collections (~seqs),
iterating and branching with while and if, and controlling
the advancement of time (sp.wait, sp.seq, TempoClock).

Clearly, the program of Fig. 1 could not be simply trans-
lated into Scala, but would have to undergo major trans-
formations. The following aspects provide challenges for
the translation of the pattern system to Scala:

• Lack of viable coroutines support means that not only
the streams for the predefined patterns have to be imple-
mented differently, but there is no direct replacement for
patterns based on functions executed on a routine, so con-

http://storm-enroute.com/coroutines/

trol structures such as loop, while, if are not instantly
available for the definition of user patterns.

• Sound Processes defines a set of clearly separated ob-
jects, and sounding objects are represented through “mod-
els” in the model-view-controller paradigm, rather than
allowing the imperative control of synths, so a suitable in-
terface between patterns and other objects must be found
that replaces SuperCollider’s EventStreamPlayer.

• Programs in Sound Processes are serialised to binary
format, because ad-hoc compilation/interpretation from
source is too slow, and because it comes with an em-
bedded domain specific language (DSL) that can clearly
delineate the representable programs and alleviate the
problem of an interference between the evolution of the
computer music framework and the reproducibility of
the user programs. Lambdas (anonymous functions) are
quite difficult to serialise fast and correctly, without ac-
cidentally capturing “unsupported API”, unserialisable
environment variables, and without risking binary in-
compatbility across language versions. For this reason,
programs are entirely reduced to an abstract syntax tree
(AST) in the particular DSL, which is a fast and robust
representation. The lack of support for storing arbitrary
lambdas however means that limitations of expressive-
ness must be otherwise overcome, if we want to retain a
powerful generic approach to writing computer music.

• SuperCollider is a dynamically typed language, while
Scala is statically typed. Part of the reason why dynamic
languages are popular in the formalisation of musical
structures is the ease with which heterogenous elements
can be combined, and the effortlessness for the user with
respect to defining and invoking polymorphic functions.
For example, the expression (Pseq([1, [2, 3], "a"])

+ 1).asStream.all is rather nonsensical but still valid
in SuperCollider, producing the output [2, [3, 4],

"a 1"]. Our system will not support heterogenous
lists, but we want to support seamless multi-channel-
expansion and arithmetic expressions, consequently check-
ing the correctness of a patterns program at compile (and
serialisation) time.

4. CASE STUDY: THE FIFTH ROOT OF TWO

One of the sound studies created by Kuivila existed in raw
form relatively early during his ALMAT residency. Its title
became The Fifth Root Of Two, and it was again composed
mostly using patterns. In the programme notes for the piece,
which is inspired by Javanese gamelan, he writes:

. . . a short melodic line of 8 to 12 pitches is
generated via Brownian noise. Then every dis-
tinct sub-collection of three pitches is taken
from the original line. Since pitches are re-
peated, this yields multiple collections of time
points where those three pitches can be found.
The three pitches are then played, sequencing
through those time points until they are all ex-
hausted and in synchronization with the basic
melodic line.

Although patterns are used here once more primarily to gen-
erate a stream of time-pitch pairs, the way the program was
constructed intrigued me: The compositional algorithm
is broken down into a number of separatedly stated func-
tions that permutate, analyse and combine the pitches of
the voices, operating on arrays as chunks of data. These
chunks of data then become the phrases or sections which
are sequenced. Fig. 2 shows most functions that are called
from within a Pspawner pattern. What happens in that pat-
tern is that auxiliary patterns, such as Brownian motion
Pbrown(-6, 6, 3), are converted ad-hoc into a stream and
evaluated for a finite number of elements, giving the cantus
for each iteration as an array of numbers which is then used
as argument to these functions; and they in turn become
again patterns in the Pbind that represents the notes of the
section.

In other words, there is an excursion pattern → stream
→ array→ pattern. What if we could solve the translation
problem in Scala by removing that excursion and providing
all the necessary operations on patterns themselves that
make them akin to any other collection (array)? Through
multiple iterations, I prototyped this idea, leading first to a
translation of the functions on arrays of Fig. 2 into functions
on regular Scala collections—arguably one of the strong
parts of Scala’s standard library—as shown in Fig. 3, and
in the second step to a translation from regular collections
to patterns in Scala, as shown in Fig. 4.

4.1 From Collection to Pattern

When comparing the code, one can observe several things:

• The number of lines remains approximately the same.
Scala is shorter where we can make use of the powerful
functions of its collections library, and the “body” of the
functions is similarly expressive. The method signatures
are more formal in Scala, as static types need to be spe-
cified. We can use generic methods (e.g. extract being
generic in the element type A), but we have to model op-
erational constraints, such as the ability to perform arith-
metic operations on generic elements, using so-called
type-class parameters, here Integral for Scala collec-
tions, and our variant Num in the patterns case. Type-
classes are passed implicitly in Scala, so the caller of
these functions generally does not carry the burden to fig-
ure these out, however the API design of the patterns lib-
rary must carefully define and choose these type-classes.

• Each language has its idiomatic names for collection op-
erations, which means that translating patterns user code
from one language to the other needs careful matching.
For example, the monadic operations map and flatMap in
Scala correspond with collect and combined collect /
flatten in SuperCollider.

• When transitioning to our patterns library, we use a trick
to avoid the need to serialise lambdas that would nor-
mally occur as arguments to map, flatMap, etc.: we in-
troduce a new constraint such that the element type
of the pattern on which these methods are called must
be another pattern. In other words, the methods are

// all pairs from two arrays
~directProduct = { | a, b |
a.collect({| v | b.collect{ | w | v.copy.add(w) }})
.flatten;

};

// collects the indices of every occurrence of
// elements of t in s
~extract = { | s, t |
var locales = t.size.collect({ | j |
var hits = [];
s.do({ | b, i | if (b == t[j]) {
hits = hits.add(i) } });

hits;
});
locales;

};

// generate all tuplets from within x, an array where
// each element is an array of occurences of a value
~allTuples = { | x |
var index, size, current;
size = x.size;
if (size < 2) {
x.first

} {
current = x[0].collect(_.asArray);
(1..size-1).do { | i |
current = ~directProduct.(current, x[i])

};
current

};
};

// dur of a set of time points relative to a cycle.
~computeDur = { | tps, cycle |
var dur = tps.differentiate[1..];
dur = dur mod: cycle;
dur = dur.collect({| v , i |
if (v == 0){ v = cycle}; v });

dur.sum;
};

// sort groups of time points based on total dur
~sortTuples = { | array, cycle |
array.sort({| a, b| ~computeDur.(a, cycle) <=

~computeDur.(b, cycle) })
};

// computes and sorts all sub patterns of a pattern
~computeDurs = { | pattern, cantus, start = 0|
var positions, tuples, durs;
positions = ~extract.(cantus, pattern);
tuples = ~allTuples.(positions);
tuples = tuples.sort({| a, b |
~computeDur.(a, 7) > ~computeDur.(b, 7) });

durs = ([start mod: cantus.size] ++ tuples.flat)
.slide(2).clump(2).collect({ | pr |
var dur = pr[1] - pr[0] mod: cantus.size;
if (dur == 0) { dur = cantus.size}; dur });

durs;

};

Figure 2. Functions used in the SuperCollider code of
The Fifth Root Of Two.

// all pairs from two arrays
def directProduct[A](a: Seq[Seq[A]], b: Seq[A]) =

a.flatMap { v =>
b.map { w => v :+ w }

}

// collects the indices of every occurrence of
// elements of t in s
def extract[A](s: Seq[A], t: Seq[A]): Seq[Seq[Int]] =

t.map { tj =>
s.zipWithIndex.collect {

case (b, i) if b == tj => i
}

}

// generate all tuplets from within x, an array where
// each element is an array of occurrences of a value
def allTuples[A](x: Seq[Seq[A]]): Seq[Seq[A]] = {

val hd +: tl = x
tl.foldLeft(hd.map(Seq(_)))((ys, xi) =>

directProduct(ys, xi))
}

// dur of a set of time points relative to a cycle.
def computeDur[A](tps: Seq[A], cycle: A)

(implicit num: Integral[A]): A = {
import num._

val dur0 = tps.differentiate
val dur1 = dur0.map(mod(_, cycle))
val dur = dur1.map { v =>
if (v == zero) cycle else v }

dur.sum
}

// sort groups of time points based on total dur
def sortTuples[A](xs: Seq[Seq[A]], cycle: A)

(implicit num: Integral[A]) =
xs.sortWith { (a, b) =>

num.lteq(computeDur[A](a, cycle),
computeDur[A](b, cycle))

}

// computes and sorts all sub patterns of a pattern
def computeDurs[A](pattern: Seq[A], cantus: Seq[A],

start: Int = 0): Seq[Int] = {
val positions = extract(cantus, pattern)
val tuples0 = allTuples(positions)
val tuples = tuples0.sortWith { (a, b) =>

computeDur(a, 7) > computeDur(b, 7)
}
val clump = (Seq(mod(start, cantus.size)) ++

tuples.flatten).sliding(2).toList
clump.map { case Seq(pr0, pr1) =>
val dur0 = mod(pr1 - pr0, cantus.size)
if (dur0 == 0) { cantus.size } else dur0

}
}

Figure 3. Translation of Fig. 2 to regular Scala collections.

// all pairs from two arrays
def directProduct[A](a: Pat[Pat[A]], b: Pat[A]) =

a.flatMap { v =>
b.bubble.map { w => v ++ w }

}

// collects the indices of every occurrence of
// elements of t in s
def extract[A: ScalarEq](s: Pat[A], t: Pat[A]):

Pat[Pat[Int]] =
t.bubble.map { tj =>
val same = s sig_== tj.hold()
val indices = s.indices
val indicesF = Gate(indices, same)
indicesF

}

// generate all tuplets from within x, an array where
// each element is an array of occurrences of a value
def allTuples[A](x: Pat[Pat[A]]): Pat[Pat[A]] = {

val hd = x.head.bubble
val tl = x.tail
tl.foldLeft(hd)(directProduct)

}

// dur of a set of time points relative to a cycle.
def computeDur[A](tps: Pat[A], cycle: Pat[A])

(implicit num: Num[A]): Pat[A] = {
val one = Constant(num.one)
val dur0 = tps.differentiate
val dur = ((dur0 - one) mod cycle) + one
dur.sum

}

// computes and sorts all sub patterns of a pattern
def computeDurs[A: ScalarEq](pattern: Pat[A],

cantus: Pat[A], start: Pat[Int] = 0): Pat[Int] = {
val positions = extract(cantus, pattern)
val tuples0 = allTuples(positions)
val tuples = tuples0.sortWith { (a, b) =>

computeDur(a, 7) > computeDur(b, 7)
}
val cantusSz = cantus.size
val clump = ((start mod cantusSz) ++

tuples.flatten).sliding(2)
clump.flatMap { pr =>

val (pr0, pr1) = pr.splitAt(1)
((pr1 - pr0 - 1) mod cantusSz) + 1

}
}

Figure 4. Translation from Scala collections to our Scala
patterns library.

defined only on nested patterns. This allows us to eagerly
apply the lambda parameter, resulting in another pattern
program (AST) that can thus be easily serialised. Where
this is not possible, we make use of the bubble operation
that transforms a Pat[A] (pattern of generic element-
type A) to a Pat[Pat[A]], wrapping each input element
in a single-element pattern. Although it may look strange
at first sight, it works hand and hand with the fact that
our patterns somehow blur the difference between single
values and patterns of single values. For example, if
you would prepend and append an element to a regular
Scala collection using x +: xs and xs :+ x, the single
element as a pattern has the same kind as the sequence
pattern to which is prepended or appended, the opera-
tions thus becoming simple concatenations x ++ xs and
xs ++ x.

5. ENTIRE PATTERN PROGRAMS

With the help of the powerful collections originated meth-
ods as equivalent patterns operations, we are now capable
of translating most of the central Pspawner pattern of The
Fifth Root Of Two, shown in Fig. 5, into a purely func-
tional patterns program, shown in Fig. 6. Notice how the
asStream transitions to imperative style have disappeared.
The following details of the translation and implementation
are noteworthy:

• In the original code there was an imperative loop in each
iteration of which a number of values was drawn from an
ad-hoc stream cantus; instead in Scala, we use a nested
pattern with flatMap operations, neatly aligned in the
code by using Scala’s for-comprehension syntax. In
order to make the necessary “re-expansion” of patterns to
streams work, we introduce the concept of automatic
stream reset. For example, the lPat pattern that moves
up and down to determine the cantus length is defined
in the outer scope, the expression len <- lPat.bubble

creates a stream of single-element patterns with each of
the length values, and maps that stream; in every iteration
of the mapping, the streams corresponding to the inner
patterns, e.g. offset and cantus0, are reset, correctly
producing a newly rooted Brownian movement in each
iteration.

• We introduced a simplified version of the Pbind pattern
(called Bind in Scala as we do not have to worry about
the flat name space restriction that SuperCollider has),
based on a dictionary from strings to patterns. We have
not yet implemented the equivalents for the wait and
suspend operations provided by Pspawner, and neither
is there any notion yet of a TempoClock. Appropriate
replacements for these functions will be addressed in a
future update of the library.

• Special handling of resting symbol \r is not available
yet (and in fact difficult to model in the nominal type sys-
tem). Instead we treat−100 as a pitch value representing
resting notes.

• Although we originally followed the distinction between
asStream and embedInStream of SuperCollider’s library,

which introduces a subtlety in the treatment of constants
in patterns, we eventually eliminated this distinction, re-
quiring the user to explicitly specify the desired beha-
viour of constants. By default a constant produces an
infinite stream of its value, and one can use take() to
produce a single-element pattern; the opposite opera-
tion is hold() which repeats the first value of a pattern
indefinitely.

6. INTEGRATION WITH SOUND PROCESSES

The patterns library presented here is available as a stan-
dalone open source project, 4 which could be used with
vanilla ScalaCollider. However, the actual aim is integ-
ration with the Sound Processes framework. In the cur-
rent version, patterns consisting of time-value tuples can
be used as control input to parameters of the Proc object,
which roughly corresponds to a Synth or NodeProxy in
SuperCollider. Therefore, the direction of flow here is pat-
tern → proc. An interesting possibility is opened by the
Grapheme breakpoint function object, into which patterns
can be translated, allowing the manual or algorithmic modi-
fication of values produced by the evaluation of a pattern
across time. We are currently complementing this usage
direction of patterns with a possibility of using the opposite
direction, where a Proc is used as an attribute of a Pattern

object, which may then be looked up for the Bind’s instru-
ment key, allowing proc→ pattern and the equivalent of an
event-stream-player.

While the first iteration of our library used simple mut-
able state for the implementation of streams, these have
now been retrofitted with the transactional memory model
of Sound Processes. That means that on the one hand
patterns embodied by the Pattern object formalism in
Sound Processes will be stored in the workspace as immut-
able patterns which are expanded to transient in-memory
streams when used as parameters to sounding objects or
reproduced as a sequence of sounds through Bind. On
the other hand, we can now introduce a second object
Stream as object formalism as well: A pattern is expan-
ded into a state machine stored as such in the workspace
of Sound Processes! Values from this stream can be polled
at arbitrary instants in a sound program, and the state of
the stream is preserved across very long durations and even
closing and re-opening a workspace. What is essentially
introduced is a form of persistent Max/PD or Open Music
type of “patcher” (where values correspond to messages),
the state of which is automatically preserved. I believe that
this is a powerful new abstraction for creating composi-
tions, a pathway I wish to explore in the future.

7. CONCLUSIONS

I have introduced a new patterns library inspired by Su-
perCollider and implemented in the Scala programming
language to be used in ScalaCollider and Sound Processes.
The challenges and possibilities provided by such trans-
lation process were discussed, showing how patterns can

4 https://git.iem.at/sciss/Patterns

be incorporated in a purely functional model and expan-
ded as stateful streams that can be stored and recalled
across the boundary of a particular working session. The
Pattern object thus becomes a third core abstraction within
Sound Processes, next to real-time DSP functions embod-
ied by Proc and offline or non-realtime DSP functions em-
bodied by FScape [5]. The conceptual implications of this
translation are only beginning to become clear. For ex-
ample, the notion of resetable pattern sub-programs may
carry a profound opportunity for understanding and integ-
rating resetable programs in the FScape formalism as well,
which is currently too closely tied to the constraints of
real-time UGens after which it is modelled.

Acknowledgments

I am very grateful to Ron Kuivila for having worked with
us during the ALMAT artistic research residency, providing
us with these case examples, engaging in fundamental dis-
cussions about the architecture of the patterns library, and
giving feedback on our new and different implementation.
ALMAT is funded by the Austrian Science Fund (FWF), as
project PEEK AR 403-GBL.

References
[1] H. H. Rutz, ‘Sound processes: A new computer music

framework’, in Proceedings of the Joint 11th Sound
and Music Computing Conference and the 40th Inter-
national Computer Music Conference, A. Georgaki
and G. Kouroupetroglou, Eds., Athens: National and
Kapodistrian University of Athens, 2014, pp. 1618–
1626. [Online]. Available: http://hdl.handle.net/
2027/spo.bbp2372.2014.245.

[2] R. Kuivila, ‘Events and Patterns’, in The SuperCol-
lider Book, S. Wilson, D. Cottle and N. Collins, Eds.,
Cambridge, MA: MIT Press, 2011, pp. 179–205.

[3] A. Wang and O.-J. Dahl, ‘Coroutine sequencing in a
block structured environment’, BIT Numerical Math-
ematics, vol. 11, no. 4, pp. 425–449, 1971. DOI: 10.
1007/BF01939412.

[4] T. Rompf, I. Maier and M. Odersky, ‘Implementing
First-Class Polymorphic Delimited Continuations by
a Type-Directed Selective CPS-Transform’, in ACM
SIGPLAN Notices, vol. 44, 2009, pp. 317–328.

[5] H. H. Rutz and R. Höldrich, ‘A Sonification Inter-
face Unifying Real-Time and Offline Processing’, in
Proceedings of the 14th Sound and Music Computing
Conference (SMC), Espoo, 2017.

https://git.iem.at/sciss/Patterns
http://hdl.handle.net/2027/spo.bbp2372.2014.245
http://hdl.handle.net/2027/spo.bbp2372.2014.245
https://doi.org/10.1007/BF01939412
https://doi.org/10.1007/BF01939412

~spawner = Pspawner({|sp|
var pat;
var length, percentRests;
var lPat, rPat;
var offset = 0;
var catpat =
Pbind(*[
instrument: \sine4,
note: Prout({ loop{ Pseq(~cantus).embedInStream

}}),
note: Pkey(\note) * 2.4 + 4,
dur: 0.2,
db: -45,
octave: 5,
detune: Pwhite(-2.0,2.0),
pan: 0,
out: Pwhite(0, 23),
i: Pseq((0..23), inf),
ar: 0.001,
dr: 0.1,
stretch: 1,
legato: 1,

]);
lPat = Pseq((8..12).mirror, inf).asStream;
rPat = Pseq((5..8).mirror/25, inf).asStream;

loop {
length = lPat.next;
~cantus = (Pbrown(-6, 6, 3)).asStream
.nextN(length);

{ ~cantus[~cantus.size.rand] = \r }.dup((length *
rPat.next).asInteger.postln);

~catter = sp.par(catpat);

~pitchsets = ~cantus.asSet.asArray.powerset
.select{ | v | v.size == 3};

~pitchsets = ~pitchsets.collect(_.scramble);
~durs = ~pitchsets.collect({ | pset |
~computeDurs.(pset, ~cantus).sum });

~pats = ~pitchsets.collect({ | part, i |
i = i + offset mod: 24;
Pbind(*[
instrument: \sine4,
#[note, dur], Pseq([~makePart.(part,~cantus,0,

[1,1,2,2,4].choose),
Pfunc({ ("voice" + i + "done").postln; nil

})]),
note: Pkey(\note) * 2.4 + 4,
db: -15,
octave: 5,
legato: i.lincurve(0, ~parts.size, 0.02, 1,0),
detune: Pwhite(-2.0,2.0),
i: Pseq((0..23), inf, i),
ar: 0.001,
dr: 0.1,
stretch: 1,
db: i.linlin(0, ~parts.size, -40, -30),

]);
});
offset = offset + 1 mod: 24;

sp.par(Ppar(~pats));
sp.wait((~cantus.size * (~durs.sort.last div:

~cantus.size + 1) * 0.1).postln);
// ...
sp.suspend(~catter);
sp.suspendAll;

}
});

Figure 5. Central pattern (shortened and simplified) in The
Fifth Root Of Two, original SuperCollider variant.

def mkGraph[Tx](): Pat[Event] = {

def mkNotes(in: Pat[Int]): Pat[Double] =
in * 2.4 + 4.0

val baseBind: Bind.Map = Map(
"proc" -> "sine4",
"octave" -> 5,
"detune" -> White(-2.0, 2.0),
"dr" -> 0.1,
"stretch" -> 1

)

def catPat(cantus: Pat[Int]): Pat[Event] = {
val map = baseBind ++ Bind.Map(

"note" -> mkNotes(cantus),
"rest" -> (cantus sig_== -100),
"dur" -> 0.2,
"db" -> -45,
"pan" -> 0,
"out" -> White(0, 23),
"i" -> ArithmSeq(0, 1).mod(24),
"ar" -> 0.001

)
Bind(map)

}

val lPat = Pat.loop()((8 to 12).mirror)
val rPat = Pat.loop()((5 to 8).mirror) / 25.0

val xs = for {
len <- lPat.bubble
rests <- rPat.bubble
offset <- ArithmSeq(0, 1).bubble
cantus0 <- Brown(-6, 6, 3).grouped(len)

} yield {
val numPause = (len * rests).toInt
val cantus = cantus0.updatedAll(

len.hold().take(numPause).rand, -100)
val cantusEvt = catPat(cantus)
val pitchSets0 =
cantus.distinct.sorted.combinations(3)
val pitchSets = pitchSets0.map(_.shuffle)
val numP = pitchSets.size.hold()

val pats = pitchSets.mapWithIndex {
(part, partsIdx) =>
val partsIdxH = partsIdx.hold()
val (notePat, durPat) = makePart(part, cantus,
rest = -100, stutter = Pat(1,1,2,2,4).choose)

val l = partsIdxH.linlin(0, numP, 0.02, 1.0)
val db = partsIdxH.linlin(0, numP, -40, -30)
val map = baseBind ++ Bind.Map(

"note" -> mkNotes(notePat),
"rest" -> (notePat sig_== -100),
"dur" -> durPat,
"legato" -> l,
"i" -> (partsIdxH + offset).mod(24),
"ar" -> 0.001,
"db" -> db

)
Bind(map)

}

Par(pats :+ cantusEvt)
}
xs.flatten

}

Figure 6. Translation of Fig. 5 into our Scala patterns
library.

	 1. Introduction
	 2. Patterns in the Course of Rapprochement
	2.1 Anatomy of Patterns

	 3. Matches and Mismatches for Scala
	 4. Case Study: The Fifth Root Of Two
	4.1 From Collection to Pattern

	 5. Entire Pattern Programs
	 6. Integration with SoundProcesses
	 7. Conclusions

